The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.<\/p>\r\n","references":"[1]\tM. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia, \u201cSonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects,\u201d Phys. Rev. Lett., vol. 83, pp. 3054-3057, 1999.\r\n[2]\tM. Kafesaki, M. M. Sigalas, and N. Garcia, \u201cWave guides in two-dimensional elastic wave band-gap materials,\u201d Physica B, vol. 296, pp. 190-194, 2001.\r\n[3]\tM. S. Kushwaha and P. Halevi, \u201cGiant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders,\u201d Appl. Phys. Lett., vol. 69(1), pp. 31-33, 1996.\r\n[4]\tM. M. Sigalas, \u201cElastic wave band gaps and defect states in two-dimensional composites,\u201d J. Acoust. Soc. Am., vol. 101(3), pp. 1256-1261, 1997.\r\n[5]\tM. M. Sigalas, \u201cDefect states of acoustic waves in a two-dimensional lattice of solid cylinders,\u201d J. Appl. Phys., vol. 84(6), pp. 3026-3030, 1998. \r\n[6]\tF. Wu, Z. Hou, Z. Liu, and Y. Liu, \u201cPoint defect states in two-dimensional phononic crystals,\u201d Phys. Lett. A, vol. 292(3), pp.198-202, 2001.\r\n[7]\tF. Wu, Z. Liu, and Y. Liu, \u201cSplitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals,\u201d Phys. Rev. E , vol. 69(6), 066609, 2004.\r\n[8]\tM. Kafesaki, M. M. Sigalas, and N. Garcia, \u201cFrequency Modulation in the transmittivity of wave guides in elastic-wave band-gap materials,\u201d Phys. Rev. Lett., vol. 85(19), pp. 4044-4047, 2000.\r\n[9]\tM. Kafesaki, M. M. Sigalas, and N. Garcia, \u201cWave guides in two-dimensional elastic wave band-gap materials,\u201d Physica B, vol. 296(1-3), pp. 190-194, 2001.\r\n[10]\tT. Miyashita and C. Inoue, \u201cNumerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method,\u201d Jpn. J. Appl. Phys., vol. 40(5B), pp. 3488-3492, 2001.\r\n[11]\tT. Miyashita, \u201cSonic crystals and sonic wave-guides,\u201d Meas. Sci. Technol., vol. 16(5), pp. R47-R63, 2005.\r\n[12]\tT. Miyashita, \u201cExperimental study of a sharp bending wave-guide constructed in a sonic-crystal slab of an array of short aluminum rods in air,\u201d IEEE Ultransonics Symposium, pp. 946-949, 2004.\r\n[13]\tF. Wu, H. Zhong, S. Zhong, Z. Liu, and Y. Liu, \u201cLocalized states of acoustic waves in three-dimensional periodic composites with point defects,\u201d Eur. Phys. J. B, vol. 34(3), pp. 265-268, 2003.\r\n[14]\tL. Rayleigh, \u201cThe problem of the whispering gallery,\u201d Philos. Mag. Series 6, vol. 20(120), pp. 1001-1004, 2009.\r\n[15]\tM. Xing, W. Zheng, Y. Zhang, G. Ren, X. Du, K. Wang, and L. Chen, \u201cThe whispering gallery mode in photonic crystal ring cavity,\u201d SPIE, 6984, pp. 698438-1-4.\r\n[16]\tK. Nagahara, M. Morifuji, and M. Kondow, \u201cOptical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,\u201d Photon. Nanostr. Fundam. Appl., vol. 9(3), pp. 261-268, 2011.\r\n[17]\tY. Q. Wang, \u201cCoupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings,\u201d Europhys Lett., vol. 74(2), pp. 261-267, 2006.\r\n[18]\tJ. Li, Y. S. Wang, and C. Zhang, \u201cFinite element method for analysis of band structures of phononic crystal slabs with Archimedean-like tilings,\u201d IEEE IUS, pp.1548-1551, 2009.\r\n[19]\tY. L. Xu, C. Q. Chen, and X. G. Tian, \u201cTunable band structures of 2D multi-atom Archmedean-like phononic crystals,\u201d Int. J. Comp. Mat. Sci. Eng., vol. 1(2), 1250016, 2012.\r\n[20]\tCOMSOL 3.5a. The COMSOL Group, Stockholm, Sweden, 2009.\r\n[21]\tY. J. Cao and Y. Z. Li, \u201cSymmetry and coupling efficiency of the defect modes in two-dimensional phononic crystals,\u201d Mod. Phys. Lett. B, vol. 21 (22), pp. 1479-1488, 2007.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 115, 2016"}